Glicerol é aposta da USP para gerar energia limpa

Desenvolvida no câmpus de Ribeirão Preto, tecnologia dá destinação ambiental correta ao resíduo da produção de biodiesel, gera eletricidade e produz dihidroxiacetona, matéria-prima de alto valor agregado

A corrida científica mundial em busca de novas fontes de energia renováveis e sustentáveis ganhou mais um competidor: o glicerol, um dos resíduos orgânicos da produção de biodiesel. Ao propor, em Ribeirão Preto, a sua oxidação (queima) em condições especiais, a pesquisadora Lívia Palma conseguiu associar o descarte ambiental correto de um poluente com a geração de eletricidade e a produção de dihidroxiacetona, matéria-prima de alto valor usada na indústria vinícola, de bronzeadores e de produtos médicos.

“A eletricidade é obtida por meio da célula a combustível, um tipo de gerador capaz de fornecer, de modo permanente, energia para baterias de carros, notebooks, celulares, etc.”, explica Lívia, que trabalha no Laboratório de Eletroquímica e Eletrocatálise da Faculdade de Filosofia, Ciências e Letras da Universidade de São Paulo (FFCLRP-USP).

Grandes montadoras internacionais de veículos, como Honda e Toyota, também pesquisam atualmente as células a combustível. Diferentemente das baterias convencionais, feitas à base de lítio e de outros metais pesados, as equipadas com esse dispositivo inovador não precisam ser recarregadas porque têm um tanque acoplado, que possibilita o reabastecimento. “Assim, quando se esgota o combustível no tanque, basta repor”, afirma Lívia.

A célula a combustível é dividida em duas partes. A primeira, chamada de ânodo, é responsável pela condução da corrente elétrica de um sistema – nela o combustível é queimado, liberando elétrons que atravessam o circuito e acionam o funcionamento de um motor. Na segunda parte, os elétrons tem como destino o outro polo, chamado cátodo, onde o oxigênio será reduzido. “A reação de oxigênio é mais rápida em meio alcalino”, destaca a pesquisadora.

Renda

Outro mérito do estudo acadêmico de Lívia é gerar riqueza a partir da reciclagem de um resíduo de origem orgânica, abundante e com potencial poluente. O grama do glicerol custa R$ 0,70 e origina a dihidroxiacetona cujo grama vale R$ 215.

“A cada dez litros de biodiesel produzido, 10% desse volume é glicerol. O estudo propõe agora definir qual é a quantidade de glicerol necessária para produzir um grama de dihidroxiacetona (um dos resíduos da geração de eletricidade na célula a combustível)”, informa Lívia.

Prata da casa

Formada e pós-graduada em Química pela FFCLRP-USP, em seu doutorado Lívia recebeu bolsa de estudo da Fundação de Amparo à Pesquisa do Estado (Fapesp). Ela defendeu sua tese no ano passado, com orientação da professora Adalgisa Andrade, também do Departamento de Química, da FFCLRP. O título da tese é Desenvolvimento de células a combustível de álcoois direta: Produção de protótipos de alta potência.

Além do glicerol, o estudo acadêmico de Lívia também investigou meios de aumentar a eficiência da oxidação de outro álcool, o etanol. Em ambos os combustíveis, a reação química provocada para gerar eletricidade quebra as ligações de carbono e as transforma, entre outros produtos, em gás carbônico ou carbonato.

Desafios

Os próximos passos do estudo desenvolvido na USP Ribeirão Preto são achar meios para diminuir o uso de metais nobres (platina e paládio) necessários no processo de queima do glicerol (ou do etanol) dentro da célula a combustível. Por serem resistentes à corrosão e à oxidação, essas matérias-primas caras são inseridas em um meio alcalino (pH maior que sete) para acelerar a velocidade e a eficiência da reação química e gerar mais eletricidade em menos tempo.

Lívia destaca a existência de outras pesquisas com célula a combustível, alimentadas por hidrogênio, um gás que, embora seja abundante na atmosfera, é de difícil manipulação por ser muito volátil e trazer riscos de explosões. “A principal vantagem do glicerol é reaproveitar uma matéria-prima que costuma ser descartada. Meu desafio agora é encontrar parceiros interessados em financiar e colaborar com o desenvolvimento da tecnologia, que tem muito potencial para gerar riqueza e inovação”, finaliza.

Serviço

Departamento de Química da FFCLRP-USP
Tel. (16) 3315-3725
E-mail ardandra@ffclrp.usp.br

Rogério Mascia Silveira
Imprensa Oficial – Conteúdo Editorial

Reportagem publicada originalmente na página III do Poder Executivo I e II do Diário Oficial do Estado de SP do dia 11/02/2016. (PDF)

Empresa incubada na USP aposta na luz para vencer a dor

Sem contraindicações e efeitos colaterais, curativo a laser criado por pesquisador do Instituto de Física deve chegar ao mercado em 2017; dispositivo ‘vestível’ acelera a reabilitação de pacientes

Aproveitar as possibilidades terapêuticas do raio laser para criar um produto pioneiro no Brasil na área de reabilitação médica. Essa é a proposta do pesquisador Marcelo Sousa, doutorado em Física pela Universidade de São Paulo (USP) e fundador da empresa de tecnologia Bright Photomedicine.

Batizado de Light-aid, o curativo à base de luz tem baixo custo e não apresenta contraindicações ou efeitos colaterais. O protótipo está em desenvolvimento, com lançamento previsto para o ano que vem. A princípio, o público-alvo são hospitais e clínicas de ortopedia e fisioterapia e será necessária capacitação de oito horas para o profissional da área da saúde aprender a usar o aparelho.

Financiada pelo Pipe-Fapesp, a empresa ficará incubada no Centro de Inovação, Empreendedorismo e Tecnologia (Cietec) até o final de 2017. Associação civil sem fins lucrativos de direito privado instalada na Cidade Universitária, Butantã, capital, a incubadora é uma parceria da USP com o Instituto de Pesquisas Energéticas e Nucleares (Ipen), a Associação Nacional de Pesquisa e Desenvolvimento das Empresas Inovadoras (Anpei) e a Federação das Indústrias do Estado de São Paulo (Fiesp).

Menos dor

Testado com sucesso em camundongos e patenteado, o curativo está sendo avaliado em humanos. O equipamento une hardware e software em um dispositivo ‘vestível’ (tecnologia capaz de medir funções corporais, por exemplo), usado diretamente sobre a pele. O aparelho de fotoneuromodulação emite ondas de comprimento adequado ao corpo humano e estimula a analgesia de modo natural, ao atuar em neurotransmissores ligados à condução do sinal doloroso.

Com exceção dos olhos, o novo recurso terapêutico pode ter contato com diversas áreas do corpo, acelerando a recuperação de pacientes de idades e perfis variados. São recomendadas até duas aplicações diárias de dez minutos, aliviando dores inflamatórias, como, por exemplo, aquelas associadas ao reumatismo e outras de viés crônico, neuropático, pós-cirúrgico ou decorrentes de traumas.

“A luz artificial estimula diretamente os neurônios, diminuindo a dor e permitindo reduzir dosagens de analgésicos e outros medicamentos”, acrescenta o pesquisador. Ele explica que o passo seguinte será colocar no mercado uma versão doméstica do dispositivo, que será alimentado por bateria e controlado de modo autônomo e sob medida em um aplicativo instalado no celular do paciente.

Parceiros

O pesquisador conta que a possibilidade de empreender surgiu do fato de ter dedicado sua pós-graduação integralmente às áreas de física médica e fotomedicina, tendo sido orientado pela professora Elisabeth Yoshimura, do Instituto de Física da USP.

Em 2013, na Harvard Medical School, em Boston (Estados Unidos), o físico conheceu a experiência de um colega e se inspirou nela. O também empreendedor brasileiro havia criado um dispositivo que, acoplado a um celular, permite fazer exames de vista com a câmera do smartphone. “Em vez de repassar a tecnologia, segui o mesmo caminho e montei o meu negócio”, revela o cientista, de 29 anos de idade.

A disposição de empreender o aproximou de outros universitários. Da USP, a empresa tem em seus quadros Naira Bonifácio, sócia e CEO da empresa (formada em marketing), Nathali Cordeiro, especialista clínica (fisioterapeuta), e os graduandos João Santos (de Física) e Gabriel Capella (de Ciência da Computação). O cientista da computação da Universidade Federal do Ceará (UFC) e responsável pela modelagem de dados, Flávio Sousa, completa a equipe.


Pipe-Fapesp: um programa de sucesso

O pesquisador Marcelo Sousa classifica o programa Pesquisa Inovativa em Pequenas Empresas (Pipe), da Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), como um dos melhores do mundo no apoio à criação de negócios de base tecnológica.

Desde 1997, o Pipe apoiou mais de 1,6 mil projetos privados com até 250 empregados no Estado. Cada um pode ser desenvolvido por pesquisadores com vínculo empregatício com a empresa ou a elas associados para sua realização.

“Se recusado, um projeto pode ser reinscrito na chamada seguinte do programa, três meses depois”, comenta Sousa. “Basta o interessado cumprir as recomendações de aperfeiçoamento indicadas pela Fapesp, que podem ser de caráter científico, estrutural ou mercadológico, entre outras possibilidades”, explica.

Fases

Em julho de 2014, o pesquisador submeteu ao Pipe o projeto de criação de sua empresa. Pediu R$ 200 mil, o limite máximo da chamada Fase 1, na qual deve ocorrer, em até nove meses, a demonstração da viabilidade tecnológica do produto ou do processo.

Em outubro teve aprovado o repasse de R$ 170 mil para instalar a empresa. Em maio de 2015, os recursos foram liberados. Pretende solicitar agora financiamento de um milhão de reais (teto da Fase 2). Nessa etapa, o objetivo é desenvolver o produto ou processo, em até no máximo dois anos.

Na Fase 3, a última, a empresa deve ter concluído o desenvolvimento comercial e industrial do produto ou do processo e deverá obter os recursos financeiros no mercado ou em agências de financiamento. Eventualmente, a Fapesp lança editais – com a Financiadora de Estudos e Projetos (Finep) e outros órgãos – para o financiamento específico nesta etapa.

Rogério Mascia Silveira
Imprensa Oficial – Conteúdo Editorial

Reportagem publicada originalmente na página I do Poder Executivo I e II do Diário Oficial do Estado de SP do dia 30/01/2016. (PDF)

Unesp cria película para uso em telas planas

Produzido com bactérias e óleo de mamona, biomaterial de baixo custo desenvolvido pelo Instituto de Química de Araraquara é flexível, resistente e sustentável e pode ser alternativa ao vidro

Uma pesquisa do Laboratório de Materiais Fotônicos do Instituto de Química da Universidade Estadual Paulista (IQ-Unesp), câmpus de Araraquara, pode representar no futuro uma alternativa às atuais telas planas de vidro usadas em celulares, tablets e televisores. O biomaterial desenvolvido é uma película produzida a partir de óleo de mamona, fonte de biomassa abundante no Brasil, e da celulose proveniente de culturas da bactéria Gluconacetobacter xylinus.

Segundo o químico Hernane Barud, um dos participantes da pesquisa, a tecnologia traz diversas vantagens na comparação com o vidro, cuja origem é a sílica, composto inorgânico encontrado na areia, que impacta o meio ambiente em seus processos de produção e de descarte. Patenteada em âmbito nacional, a película criada em Araraquara é obtida por meio de um processo “verde” e sustentável – usa celulose produzida em laboratório proveniente de fontes naturais.

A nova tecnologia dispensa o corte de árvores e a necessidade de separar a celulose de outras substâncias como a lignina e a hemicelulose, impurezas que precisam ser removidas. Barud explica que o único tratamento exigido para originar uma matéria-prima flexível, resistente e parecida com um plástico é a eliminação das bactérias depois da produção da película.

Descarte correto

Uma das vantagens é o fato de a celulose se decompor na natureza em menos de um ano e ainda colaborar para a adubação do solo, ao passo que o vidro exige descarte ambiental específico e centenas de anos para se decompor.

A película também pode ser produzida por outras fontes de carbono capazes de fornecer a glicose necessária para alimentar os micro-organismos. Já foram testados com sucesso o melaço de cana e a goma de caju, dois resíduos agroindustriais baratos, abundantes e ricos em açúcares.

O pesquisador conta que o estudo começou em 2004. Na época, uma empresa nacional solicitou ao IQ-Unesp a caracterização de um biofilme produzido a partir de mantas de celulose bacteriana. O cliente, atuante na área médica e de biotecnologia, desejava produzir curativos com a espessura de um folha de papel de seda e com propriedades terapêuticas especiais.

Concluído o pedido, o passo seguinte foi produzir, no próprio Laboratório de Materiais Fotônicos, as mantas de celulose. Na visão do grupo de pesquisadores, havia outros usos para esse biomaterial, nas áreas odontológica, de preparação de biossensores e de desenvolvimento de novos curativos, entre outras possibilidades.

Transparência

Em 2009, os cientistas de Araraquara começaram a pesquisar o uso da manta como substrato flexível para displays. A qualidade do material foi considerada satisfatória; no entanto, o composto era opaco e não representava alternativa viável ao vidro.

Entre 2010 e 2015, o desafio foi tornar transparente a celulose obtida. Com isso, o IQ-Unesp passou a fazer parte da corrida tecnológica mundial em busca de telas “orgânicas” para celulares e televisores, eletroeletrônicos com vida útil cada vez menor e a preocupação com os impactos ambientais incluídos em seus processos de produção e de descarte.

Depois de vários experimentos, a solução encontrada pelos cientistas da Unesp foi usar óleo de mamona transformado em poliuretano – processo que conferiu a transparência necessária ao material para substituir o vidro.

Além de colaborador do IQ-Unesp, Barud é docente do programa de Biotecnologia do Centro Universitário de Araraquara (Uniara). Ele conta que o trabalho teve financiamento da Fundação de Amparo à Pesquisa do Estado (Fapesp) na modalidade Auxílio à Pesquisa, no valor de R$ 45,7 mil. Atualmente, ele busca parceiros para produzir o biomaterial em escala industrial e estruturar um novo negócio.

No IQ-Unesp, a linha de estudos com a película tem a coordenação dos professores Sidney Ribeiro e Younes Messaddeq e apoio do doutorando Robson Silva e dos doutores Maurício Palmieri e Elaine Rusgus. Participam também do trabalho o cientista Wagner Polito, da Universidade de São Paulo de São Carlos e os doutores Marco Cremona e Vanessa Calil, ambos cientistas da Pontifícia Universidade Católica do Rio de Janeiro (PUC-RJ) e do Instituto Nacional de Metrologia, Qualidade e Tecnologia (Inmetro) do Rio de Janeiro.

Rogério Mascia Silveira
Imprensa Oficial – Conteúdo Editorial

Reportagem publicada originalmente na página IV do Poder Executivo I e II do Diário Oficial do Estado de SP do dia 07/01/2016. (PDF)